Search results for "integral geometry"
showing 10 items of 12 documents
Pestov identities and X-ray tomography on manifolds of low regularity
2021
We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds $(M,g)$ with $g \in C^{1,1}$. In addition to a proof, we produce a redefinition of simplicity that is compatible with rough geometry. This $C^{1,1}$-regularity is optimal on the H\"older scale. The bulk of the article is devoted to setting up a calculus of differential and curvature operators on the unit sphere bundle atop this non-smooth structure.
Geodesic ray transform with matrix weights for piecewise constant functions
2019
We show injectivity of the geodesic X-ray transform on piecewise constant functions when the transform is weighted by a continuous matrix weight. The manifold is assumed to be compact and nontrapping of any dimension, and in dimension three and higher we assume a foliation condition. We make no assumption regarding conjugate points or differentiability of the weight. This extends recent results for unweighted transforms.
The Calderón problem with partial data on manifolds and applications
2013
We consider Calderon's inverse problem with partial data in dimensions $n \geq 3$. If the inaccessible part of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the flatness condition include parts of cylindrical sets, conical sets, and surfaces of revolution. We prove local uniqueness in the Calderon problem with partial data in admissible geometries, and global uniqueness under an additional concavity assumption. This work unifies two earlier approaches to this problem (\cite{KSU} and \cite{I}) and extends both. The proofs are based on impr…
Analysis of the railway network operations safety, with of different obstacles along the route, by the study of Buffon-Laplace type problems: the cas…
2016
In this paper we use an approach based on a Buffon-Laplace type problem for an irregular hexagonal lattice and obstacles to study some problems about analysis of the railway network operations safety in the presence of different obstacles on the route.
A note on Oscar Chisini mean value definition
2012
Mainly on the basis of some notable physical examples reported in a 1929 Oscar Chisini paper, in this brief note it is exposed further possible historic-critical remarks on the definition of statistical mean which lead us towards the realm of Integral Geometry, via the Felix Klein Erlanger Programm.
Three viewpoints on the integral geometry of foliations
1999
We deal with three different problems of the multidimensional integral geometry of foliations. First, we establish asymptotic formulas for integrals of powers of curvature of foliations obtained by intersecting a foliation by affine planes. Then we prove an integral formula for surfaces of contact of an affine hyperplane with a foliation. Finally, we obtain a conformally invariant integral-geometric formula for a foliation in three-dimensional space.
Tensor tomography: Progress and challenges
2013
We survey recent progress in the problem of recovering a tensor field from its integrals along geodesics. We also propose several open problems.
A Laplace type problem for a lattice with cell composed by two trapezius and a triangle
2014
In the previous papers, [1], [2], [3], [4], [5], [6], [7], [8], [9] and [10] the authors study some Laplace problem for different lattices. In this paper we determine the probability that a random segment of constant length intersects a side of lattice with cell represented in fig.1
RECOVERY OF THE SOUND SPEED FOR THE ACOUSTIC WAVE EQUATION FROM PHASELESS MEASUREMENTS
2018
We recover the higher order terms for the acoustic wave equation from measurements of the modulus of the solution. The recovery of these coefficients is reduced to a question of stability for inverting a Hamiltonian flow transform, not the geodesic X-ray transform encountered in other inverse boundary problems like the determination of conformal factors. We obtain new stability results for the Hamiltonian flow transform, which allow to recover the higher order terms.
A new rotational integral formula for intrinsic volumes in space forms
2010
A new rotational version of Crofton's formula is derived for the intrinsic volumes of a domain Y in a space form. More precisely, a functional is defined on the intersection between Y and a totally geodesic submanifold (plane) through a fixed point, such that the rotational average of this functional is equal to the intrinsic volumes of Y. Particular cases of interest in stereology are considered for the Euclidean case. © 2009 Elsevier Inc. All rights reserved.